skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Plaschke, Ferdinand"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study presents observations of magnetopause reconnection and erosion at geosynchronous orbit, utilizing in situ satellite measurements and remote sensing ground‐based instruments. During the main phase of a geomagnetic storm, Geostationary Operational Environmental Satellites (GOES) 15 was on the dawnside of the dayside magnetopause (10.6 MLT) and observed significant magnetopause erosion, while GOES 13, observing duskside (14.6 MLT), remained within the magnetosphere. Combined observations from the THEMIS satellites and Super Dual Auroral Radar Network radars verified that magnetopause erosion was primarily caused by reconnection. While various factors may contribute to asymmetric erosion, the observations suggest that the weak reconnection rate on the duskside can play a role in the formation of asymmetric magnetopause shape. This discrepancy in reconnection rate is associated with the presence of cold dense plasma on the duskside of the magnetosphere, which limits the reconnection rate by mass loading, resulting in more efficient magnetopause erosion on the dawnside. 
    more » « less
  2. Abstract Certain forms of solar wind transients contain significant enhancements of dynamic pressure and may effectively drive magnetosphere dynamics, including substorms and storms. An integral element of such driving is the generation of a wide range of electromagnetic waves within the inner magnetosphere, either by compressionally heated plasma or by substorm plasma sheet injections. Consequently, solar wind transient impacts are traditionally associated with energetic electron scattering and losses into the atmosphere by electromagnetic waves. In this study, we show the first direct measurements of two such transient‐driven precipitation events as measured by the low‐altitude Electron Losses and Fields Investigation CubeSats. The first event demonstrates storm‐time generated electromagnetic ion cyclotron waves efficiently precipitating sub‐relativistic and relativistic electrons from >300 keV to 2 MeV at the duskside. The second event demonstrates whistler‐mode waves leading to scattering of electrons from 50 to 700 keV on the dawnside. These observations confirm the importance of solar wind transients in driving energetic electron losses and subsequent dynamics in the ionosphere. 
    more » « less